84 research outputs found

    Nucleic Acids Res

    Get PDF
    The function of genes is often evolutionarily conserved, and comparing the annotation of ortholog genes in different model organisms has proved to be a powerful predictive tool to identify the function of human genes. Here, we describe Manteia, a resource available online at http://manteia.igbmc.fr. Manteia allows the comparison of embryological, expression, molecular and etiological data from human, mouse, chicken and zebrafish simultaneously to identify new functional and structural correlations and gene-disease associations. Manteia is particularly useful for the analysis of gene lists produced by high-throughput techniques such as microarrays or proteomics. Data can be easily analyzed statistically to characterize the function of groups of genes and to correlate the different aspects of their annotation. Sophisticated querying tools provide unlimited ways to merge the information contained in Manteia along with the possibility of introducing custom user-designed biological questions into the system. This allows for example to connect all the animal experimental results and annotations to the human genome, and take advantage of data not available for human to look for candidate genes responsible for genetic disorders. Here, we demonstrate the predictive and analytical power of the system to predict candidate genes responsible for human genetic diseases

    Sex-dimorphic gene expression and ineffective dosage compensation of Z-linked genes in gastrulating chicken embryos

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Considerable progress has been made in our understanding of sex determination and dosage compensation mechanisms in model organisms such as <it>C. elegans</it>, <it>Drosophila </it>and <it>M. musculus</it>. Strikingly, the mechanism involved in sex determination and dosage compensation are very different among these three model organisms. Birds present yet another situation where the heterogametic sex is the female. Sex determination is still poorly understood in birds and few key determinants have so far been identified. In contrast to most other species, dosage compensation of bird sex chromosomal genes appears rather ineffective.</p> <p>Results</p> <p>By comparing microarrays from microdissected primitive streak from single chicken embryos, we identified a large number of genes differentially expressed between male and female embryos at a very early stage (Hamburger and Hamilton stage 4), long before any sexual differentiation occurs. Most of these genes are located on the Z chromosome, which indicates that dosage compensation is ineffective in early chicken embryos. Gene ontology analyses, using an enhanced annotation tool for Affymetrix probesets of the chicken genome developed in our laboratory (called Manteia), show that among these male-biased genes found on the Z chromosome, more than 20 genes play a role in sex differentiation.</p> <p>Conclusions</p> <p>These results corroborate previous studies demonstrating the rather inefficient dosage compensation for Z chromosome in birds and show that this sexual dimorphism in gene regulation is observed long before the onset of sexual differentiation. These data also suggest a potential role of non-compensated Z-linked genes in somatic sex differentiation in birds.</p

    Integrative data mining highlights candidate genes for monogenic myopathies

    Get PDF
    Inherited myopathies are a heterogeneous group of disabling disorders with still barely understood pathological mechanisms. Around 40% of afflicted patients remain without a molecular diagnosis after exclusion of known genes. The advent of high-throughput sequencing has opened avenues to the discovery of new implicated genes, but a working list of prioritized candidate genes is necessary to deal with the complexity of analyzing large-scale sequencing data. Here we used an integrative data mining strategy to analyze the genetic network linked to myopathies, derive specific signatures for inherited myopathy and related disorders, and identify and rank candidate genes for these groups. Training sets of genes were selected after literature review and used in Manteia, a public web-based data mining system, to extract disease group signatures in the form of enriched descriptor terms, which include functional annotation, human and mouse phenotypes, as well as biological pathways and protein interactions. These specific signatures were then used as an input to mine and rank candidate genes, followed by filtration against skeletal muscle expression and association with known diseases. Signatures and identified candidate genes highlight both potential common pathological mechanisms and allelic disease groups. Recent discoveries of gene associations to diseases, like B3GALNT2, GMPPB and B3GNT1 to congenital muscular dystrophies, were prioritized in the ranked lists, suggesting a posteriori validation of our approach and predictions. We show an example of how the ranked lists can be used to help analyze high-throughput sequencing data to identify candidate genes, and highlight the best candidate genes matching genomic regions linked to myopathies without known causative genes. This strategy can be automatized to generate fresh candidate gene lists, which help cope with database annotation updates as new knowledge is incorporated

    Histone arginine methylation regulates pluripotency in the early mouse embryo

    Get PDF
    It has been generally accepted that the mammalian embryo starts its development with all cells identical, and only when inside and outside cells form do differences between cells first emerge. However, recent findings show that cells in the mouse embryo can differ in their developmental fate and potency as early as the four-cell stage1,2,3,4. These differences depend on the orientation and order of the cleavage divisions that generated them2,5. Because epigenetic marks are suggested to be involved in sustaining pluripotency6,7, we considered that such developmental properties might be achieved through epigenetic mechanisms. Here we show that modification of histone H3, through the methylation of specific arginine residues, is correlated with cell fate and potency. Levels of H3 methylation at specific arginine residues are maximal in four-cell blastomeres that will contribute to the inner cell mass (ICM) and polar trophectoderm and undertake full development when combined together in chimaeras. Arginine methylation of H3 is minimal in cells whose progeny contributes more to the mural trophectoderm and that show compromised development when combined in chimaeras. This suggests that higher levels of H3 arginine methylation predispose blastomeres to contribute to the pluripotent cells of the ICM. We confirm this prediction by overexpressing the H3-specific arginine methyltransferase CARM1 in individual blastomeres and show that this directs their progeny to the ICM and results in a dramatic upregulation of Nanog and Sox2. Thus, our results identify specific histone modifications as the earliest known epigenetic marker contributing to development of ICM and show that manipulation of epigenetic information influences cell fate determination

    Formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics

    Full text link
    Progress on researches in the field of molecules at cold and ultracold temperatures is reported in this review. It covers extensively the experimental methods to produce, detect and characterize cold and ultracold molecules including association of ultracold atoms, deceleration by external fields and kinematic cooling. Confinement of molecules in different kinds of traps is also discussed. The basic theoretical issues related to the knowledge of the molecular structure, the atom-molecule and molecule-molecule mutual interactions, and to their possible manipulation and control with external fields, are reviewed. A short discussion on the broad area of applications completes the review.Comment: to appear in Reports on Progress in Physic

    Fibroblast growth factor signalling controls nervous system patterning and pigment cell formation in Ciona intestinalis

    Get PDF
    During the development of the central nervous system (CNS), combinations of transcription factors and signalling molecules orchestrate patterning, specification and differentiation of neural cell types. In vertebrates, three types of melanin-containing pigment cells, exert a variety of functional roles including visual perception. Here we analysed the mechanisms underlying pigment cell specification within the CNS of a simple chordate, the ascidian Ciona intestinalis. Ciona tadpole larvae exhibit a basic chordate body plan characterized by a small number of neural cells. We employed lineage-specific transcription profiling to characterize the expression of genes downstream of fibroblast growth factor signalling, which govern pigment cell formation. We demonstrate that FGF signalling sequentially imposes a pigment cell identity at the expense of anterior neural fates. We identify FGF-dependent and pigment cell-specific factors, including the small GTPase, Rab32/38 and demonstrated its requirement for the pigmentation of larval sensory organs

    Virtual Morality: Transitioning from Moral Judgment to Moral Action?

    Get PDF
    The nature of moral action versus moral judgment has been extensively debated in numerous disciplines. We introduce Virtual Reality (VR) moral paradigms examining the action individuals take in a high emotionally arousing, direct action-focused, moral scenario. In two studies involving qualitatively different populations, we found a greater endorsement of utilitarian responses–killing one in order to save many others–when action was required in moral virtual dilemmas compared to their judgment counterparts. Heart rate in virtual moral dilemmas was significantly increased when compared to both judgment counterparts and control virtual tasks. Our research suggests that moral action may be viewed as an independent construct to moral judgment, with VR methods delivering new prospects for investigating and assessing moral behaviour

    First description of a fossil chamaeleonid from Greece and its relevance for the European biogeographic history of the group

    Get PDF
    The fossil record of Chamaeleonidae is very scarce and any new specimen is therefore considered important for our understanding of the evolutionary and biogeographic history of the group. New specimens from the early Miocene of Aliveri (Evia Island), Greece constitute the only fossils of these lizards from southeastern Europe. Skull roofing material is tentatively attributed to the Czech species Chamaeleo cf. andrusovi, revealing a range extension for this taxon, whereas tooth-bearing elements are described as indeterminate chamaeleonids. The Aliveri fossils rank well among the oldest known reptiles from Greece, provide evidence for the dispersal routes of chameleons out of Africa towards the European continent and, additionally, imply strong affinities with coeval chamaeleonids from Central Europe
    • 

    corecore